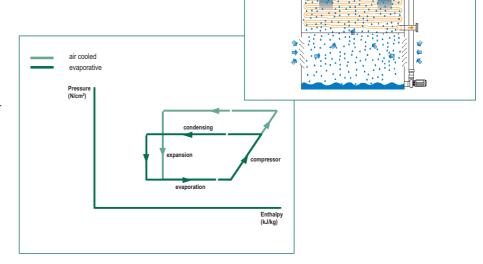


	www.BaltimoreAirc	oil.	cxvs	CXV-D	нхс	PCE	PLC2 - Polairis PLC3	VERTEX	VXC	VCL	TVC
	Principle of operation		Section 1997	APP	A A A A A A A A A A A A A A A A A A A				444		
	Capacity		475 - 2770 kW	2760 - 4035 kW	550 - 1900 kW	525 - 2715 kW	80 - 1580 kW	655 - 2785 kW	60 - 6175 kW	180 - 1340 kW	340 - 1030 kW
	Configuration		Combined flow	Combined flow	Combined flow	Counterflow	Counterflow	Counterflow	Counterflow	Counterflow	Counterflow
	Air entry		Axial fan Induced draft	Axial fan Induced draft	Axial fan Induced draft	Axial fan Induced draft	Radial fan Forced draft	Axial fan Forced draft	Centrifugal fan Forced draft	Centrifugal fan Forced draft	Axial fan Induced draft
Tab CON viz EN © 2025 Baltimore Aircol International nv	Low sound		4) c	4) c	4) c	() F	(1) A	4) E	(1) A	(1) A	4) E
	Energy efficiency		4 A	4 A	4 A	4 в	4 B	4 A	4 F	4 F	4 0
	Easy maintenance		<u>ķ</u> a	A A	В	☆ □	A A	A A	Ø D	₹ □	R A
	Operational safety (hygiene)		A	A A	В	D	A	A	E	E E	A A
	Water saving		≜ E	€ E	c c	D D	D D	D D	D D	D D	В
	Вл										

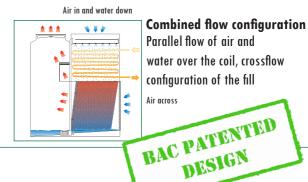

Refrigerant condensers

Principle of operation

Evaporative condensers discharge refrigerant and air-conditioning heat, and consume minimal energy and water. They combine a cooling tower and a refrigerant condenser in a single unit. A small portion of the water is evaporated, removing the heat from the refrigerant and condensing it inside the coil. This saves up to 95% of the water compared with a once-through condensing system.


Benefits

- Initial cost savings: cooling tower, condenser surface, water pump and piping in a single equipment unit
- Low system operating costs: low condensing temperatures for a more compact compressor using less power
- Low refrigerant charge, costs and environmental impact minimized
- Space-saving: up to 50 % area savings compared to comparable air-cooled installations.



Configurations

Water down

Counterflow configuration

Pressurized spray system

Fan systems

Centrifugal fan

- can overcome external static pressure, suitable for indoor installations
- inherently quiet

low energy usage

Forced draft

- rotating air handling components are located on the air inlet face at the base of the tower
- easy access for maintenance
- located in dry entering air stream

Induced draft

- rotating air handling components are mounted in the top deck of the unit
- minimal impact of fan noise
- maximum protection from fan icing
- located in the corrosive saturated discharge air stream